Exercise I

1. Sketch the graphs of each the following functions:
(i) $x \mapsto 4-x^{2} \quad$ (ii) $y=x^{2}-x-6$; (iii) $f(x)=x^{2}-2 x-8$;
(iv) $y=(x-1)(x-2)(x-3) ;\left(\right.$ v) $y=(x+1)\left(x^{2}-5 x+6\right)$;
(vi) $y=(x+1)\left(x^{2}+x+1\right)$;
(vii) $g(x)=\frac{1}{x-1}$;
(viii) $y=|x|$;
(ix) $y=|x-2|$;
2. Which of the following could be the graph of a function:
(i)

(ii)

(iii)
(vi)

(iv)

(v)

3. Let the function f be defined by:

$$
f(x)= \begin{cases}x+1, & x \leq-2 \\ x^{2}, & -2<x \leq 2 \\ 2 x, & x>2\end{cases}
$$

(i) Find $f(1)$. (ii) Find $f(3)$. (iii) Find $f(-4)$.
(iv) Sketch the graph of f.
4. Sketch the graph of
(i) $\left\{\frac{1}{n}\right\}$,
(ii) $\left\{\left(\frac{-1}{2}\right)^{n}\right\}$.
5. (i) Draw a graph of an increasing function which has domain $[1,5]$ and range [2,4].
(ii) Draw a graph of an increasing function $f(x)$ which has domain $[1,5]$ and range $[2,4]$ with $f^{\prime \prime}(x)<0$ for all $x \in(1,5)$.
(iii) Draw a graph of an increasing function $f(x)$ which has domain $[1,5]$ and range $[2,4]$ with $f^{\prime \prime}(x)>0$ for all $x \in(1,5)$.
6. For each of the following functions f compute the derivative $f^{\prime}(x)$:
(i) $f(x)=\left(x^{2}+x\right)^{2}$
(ii) $f(x)=\sqrt[3]{x+4 x^{5}}$
(iii) $f(x)=\left(x^{3}+1\right)^{4} \sin \left(x^{2}+3\right)$
(iv) $f(x)=\frac{\cos \left(x^{3}+x\right)}{\sin \left(x^{2}+1\right)}$

